skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fardi, Amirhossein"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we examine the coupling between odor dynamics and vortex dynamics around undulating bodies, with a focus on bio-inspired propulsion mechanisms. Utilizing computational fluid dynamics simulations with an in-house immersed boundary method solver, we investigate how different waveform patterns, specifically carangiform and anguilliform, influence the dispersion of chemical cues in both water and air environments. Our findings reveal that vortex dynamics significantly impact the overall trajectory of odor spots, although the alignment between odor spots and coherent flow structures is not always precise. We also evaluate the relative contributions of diffusion and convection in odor transport, showing that convection dominates in water, driven by higher Schmidt numbers, while diffusion plays a more prominent role alongside convection in air. Additionally, the anguilliform waveform generally produces stronger and farther-reaching chemical cues compared to carangiform swimmers. The critical roles of Strouhal number and Reynolds number in determining the efficiency of odor dispersion are also explained, offering insights that could enhance the design of more efficient, adaptive, and intelligent autonomous underwater vehicles by integrating sensory and hydrodynamic principles inspired by fish locomotion. 
    more » « less